High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China.
نویسندگان
چکیده
Source apportionment of organic carbon (OC) and elemental carbon (EC) from PM1 (particulate matter with a diameter equal to or smaller than 1 μm) in Beijing, China was carried out using radiocarbon (14C) measurement. Despite a dominant fossil-fuel contribution to EC due to large emissions from traffic and coal combustion, nonfossil sources are dominant contributors of OC in Beijing throughout the year except during the winter. Primary emission was the most important contributor to fossil-fuel derived OC for all seasons. A clear seasonal trend was found for biomass-burning contribution to OC with the highest in autumn and spring, followed by winter and summer. 14C results were also integrated with those from positive matrix factorization (PMF) of organic aerosols from aerosol mass spectrometer (AMS) measurements during winter and spring. The results suggest that the fossil-derived primary OC was dominated by coal combustion emissions whereas secondary OC was mostly from fossil-fuel emissions. Taken together with previous 14C studies in Asia, Europe and USA, a ubiquity and dominance of nonfossil contribution to OC aerosols is identified not only in rural/background/remote regions but also in urban regions, which may be explained by cooking contributions, regional transportation or local emissions of seasonal-dependent biomass burning emission. In addition, biogenic and biomass burning derived SOA may be further enhanced by unresolved atmospheric processes.
منابع مشابه
Reply to Cao and Zhang: Tightening nonfossil emissions alone is inefficient for PM2.5 mitigation in China.
In the short commentary by Fang Cao and Yan-Lin Zhang, the authors suggest that tightening nonfossil emissions control may serve as a potential opportunity for fine particulate matter (PM with the particle size smaller than 2.5 μm or PM2.5) mitigation in China (1). Cao and Zhang state that “Guo et al.’s. . .important new finding fails to consider particles emitted by nonfossil sources (e.g., bi...
متن کاملSource attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra.
Real-time measurements of submicrometer aerosol were performed using an Aerodyne aerosol mass spectrometer (AMS) during three weeks at an urban background site in Zurich (Switzerland) in January 2006. A hybrid receptor model which incorporates a priori known source composition was applied to the AMS highly time-resolved organic aerosol mass spectra. Three sources and components of submicrometer...
متن کاملFossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013
During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi’an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic ca...
متن کاملCarbonaceous aerosols in PM10 and pollution gases in winter in Beijing.
An intensive observation of organic carbon (OC) and elemental carbon (EC) in PM10 and gaseous materials (SO2, CO, and O3) was conducted continuously to assess the characteristics of wintertime carbonaceous aerosols in an urban area of Beijing, China. Results showed that the averaged total carbon (TC) and PM10 concentrations in observation period are 30.2 +/- 120.4 and 172.6 +/- 198.3 microg/m3,...
متن کاملSource apportionment of fine organic aerosols in Beijing
Fine particles (PM2.5, i.e., particles with an aerodynamic diameter of ≤2.5μm) were collected from the air in August 2005, August–September 2006, and January– February 2007, in Beijing, China. The chemical compositions of particulate organic matter in the ambient samples were quantified by gas chromatography/mass spectrometry. The dominant compounds identified in summertime were n-alkanoic acid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 51 14 شماره
صفحات -
تاریخ انتشار 2017